Technical data sheet ABS

RAL 7011

Chemical Name Acrylonitrile butadiene styrene Description Used by an array of industries worldwide, ABS is known for its exceptional mechanical properties. Our ABS is specifically formulated to minimize warping and ensure consistent interlayer adhesion. Key features Excellent mechanical properties and interlayer adhesion (especially when using the front door add-on), nice aesthetics, minimal warping and reliable bed adhesion. **Applications** Visual and functional prototyping and short run manufacturing. Non suitable for Food contact and in-vivo applications. Long term UV exposure can negatively affect properties of an ABS print. Applications where the printed part is exposed to temperatures higher than 85 °C.

Filament specifications	<u>Value</u>	<u>Method</u>
Diameter	2.85±0.10 mm	-
Max roundness deviation	0.10 mm	-
Net filament weight	750 g	-

Net filament weight	750 g	-
Color information	<u>Color</u>	Color code
	ABS Black	RAL 9017
	ABS White	RAL 9003
	ABS Red	RAL 3020
	ABS Blue	RAL 5002
	ABS Silver	RAL 9006
	ABS Pearl Gold	RAL 1036
	ABS Green	RAL 6018
	ABS Orange	RAL 2008
	ABSYellow	RAL 1023

ABS Gray

Mechanical properties (*)	Injection	Injection molding		3D pr	3D printing	
	Typical va	alue	Test method	Typica	l value	Test method
Tensile modulus	2030 MPa	ì	ISO 527 (1 mm/min)	1681 N	⁄IРа	ISO 527 (1 mm/min)
Tensile stress at yield	43.6 MPa		ISO 527 (50 mm/min)	39 MP	a	ISO 527 (50 mm/min)
Tensile stress at break	-		-	33.9 M	IPa	ISO 527 (50 mm/min)
Elongation at yield	4.8 %		ISO 527 (50 mm/min)	3.5 %		ISO 527 (50 mm/min)
Elongation at break	34 %		ISO 527 (50 mm/min)	4.8 %		ISO 527 (50 mm/min)
Flexural strength	-		-	-		-
Flexural modulus	-		-	-		-
Izod impact strength, notched (at 23°C)	-		-	-		-
Charpy impact strength (at 23°C)	58 kJ/m²		ISO 179	-		-
Hardness	97 (Shore	e A)	-	-		-
Thermal properties		Typical value		Tes	Test method	
Melt mass-flow rate (MFR)		41 g/10 min		ISO	ISO 1133 (260 °C, 5 kg)	
Heat deflection (HDT) at 0.455 MPa		-		-		
Heat deflection (HDT) at 1.82 MPa		-		-		
Glass transition		97 °C		ISO	306	
Coefficient of thermal expansion (flow)		-		-		
Coefficient of thermal expansion (xflow)		-		-		
Melting temperature		225-2	245 °C	ISO	294	
Thermal shrinkage		-		-		
Other properties		Турі	cal value	Tes	st metho	<u>d</u>
Specific gravity		1.10		ISO	1183	
Flame classification		-		-		

^(*) See notes.

Notes

Properties reported here are average of a typical batch. The 3D printed tensile bars were printed in the XY plane, using the normal quality profile in Cura 2.1, an UM2+, a 0.4 mm nozzle, 90% infill, 250 °C nozzle temperature and 80 °C build plate temperature. The values are the average of 5 white and 5 black tensile bars. Ultimaker is constantly working on extending the TDS data.

Disclaimer

Any technical information or assistance provided herein is given and accepted at your risk, and neither the Ultimaker or its affiliates make any warranty relating to it or because of it. Neither Ultimaker nor its affiliates shall be responsible for the use of this information, or of any product, method or apparatus mentioned, and you must make your own determination of its suitability and completeness of your own use, for the protection of the environment, and for the health and safety of your employees and purchasers of your products. No warranty is made of the merchantability or fitness of any product; and nothing herein waives any of Ultimaker's conditions of sale. Specifications are subject to change without notice.

Version Date Version 3.003

19/10/2016

